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Structure of Taylor cone-jets:
limit of low flow rates
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In this paper the structure of the Taylor meniscus and emitted jet is studied by
perturbation methods in the limit of low flow rates. An asymptotic system of gov-
erning equations is derived from the basic equations of electrohydrodynamics. They
rigorously take into account the inertia and viscosity of the liquid as well as the
surface ion mobility. The solutions to the asymptotic equations in the meniscus, jet
and surrounding gas regions are found, matched with each other, and applied to study
distributions of electric and hydrodynamic variables. Such an approach allows the liq-
uid velocity, surface charge, and meniscus-jet radius as well as electric potential inside
and outside the liquid to be calculated. We also derive the theoretical dependences
of the current carried by the jet and its diameter on the liquid properties and flow
rate. These dependences are consistent with the scaling laws found experimentally by
Fernández de la Mora & Loscertales (1994) and data obtained by Chen & Pui (1997).

1. Introduction
Stable conical protrusions at the interface between a conducting liquid charged to a

sufficiently high electric potential and a gas were first studied by Zeleny (1914, 1917)
and theoretically explained by Taylor (1964). These menisci are often called ‘Taylor
cones’ and are usually held at the end of the capillary needle when their equilibrium
and stability are investigated (Cloupeau & Prunet-Foch 1990, 1994; Joffre & Cloupeau
1985; Pantano, Gañán-Calvo & Barrero 1994, among others). One of the remarkable
features of such menisci is a charged microjet that can stream from the cone apex
under certain circumstances. This jet is fairly steady and can be longer than the
conical meniscus emitting it, but eventually breaks into a spray of charged droplets.
The jet radius may vary from hundreds of micrometres in hydrocarbons (Jones &
Thong 1971; Cloupeau & Prunet-Foch 1989) down to fractions of micrometres in
highly conducting liquids (Fernández de la Mora 1992; Chen, Pui & Kaufman 1995)
and even atomic dimensions in liquid metals (Benasayag & Sudraud 1985; Gabovich
1984). The ratio of jet speed to mean speed in a capillary needle can be as large as
107 (Fernández de la Mora 1992).

The phenomenon of the natural formation of Taylor menisci ejecting charged
microjets is of greatest practical interest since it is the basis of electrospray atomization
of liquids in the so-called cone-jet mode (Cloupeau & Prunet-Foch 1989). This method
of atomization is used in fuel injectors and other atomizers (Bailey 1988) and for drug
delivery by inhalation (Tang & Gomez 1994). Furthermore, electrospray atomization
of liquids in the cone-jet mode is capable of producing monodisperse droplets in
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the nanometre size range (Rosell-Llompart & Fernández de la Mora 1994; Chen
et al. 1995; Lohmann & Schmidt-Ott 1995) and even highly charged gas-phase ions
of macromolecules (Fenn et al. 1989). These features are of vital importance for
new materials production technologies based on ultrafine particles (Gleiter 1989;
Gutmanas 1990) and for the mass spectrometry of proteins and other large biological
molecules (Fenn et al. 1989; Smith et al. 1991). Investigation of Taylor menisci and
emitted jets is also of significant theoretical interest because their structure often
determines important phenomena such as Coulombic explosions of highly charged
droplets (Fernández de la Mora 1996; Gomez & Tang 1994).

The state of studies and applications in electrospray atomization has been reviewed
in a special issue of Journal of Aerosol Science, Vol. 25 (6), 1994. Systematic experi-
mental investigations of the cone-jet mode of electrospray atomization have yielded
the following approximate scaling laws for the case of polar liquids with values of
the dielectric constant ε & 10 and electrical conductivity K & 10−5 S m−1 (Fernández
de la Mora & Loscertales 1994):

I = fexp(ε)
(
γKQ/ε

)1/2
, (1.1)

R∗ ∼ r∗, r∗ ≡ (εε0 Q/K
)1/3

. (1.2a, b)

Here Q is the volume flow rate of liquid through the meniscus and emitted jet; I
is the current carried by the jet; R∗ is the jet radius measured at the jet head, i.e.
near the cone apex; ε, γ, K are the dielectric constant, surface tension coefficient, and
electrical conductivity of the liquid, while ε0 is the electrical permittivity of vacuum.
The function fexp(ε) has been measured for a wide variety of non-water and water
solutions by Fernández de la Mora & Loscertales (1994). The measurements by Tang
& Gomez (1994), Chen & Pui (1997), and Gañán-Calvo, Dávila & Barrero (1997)
also confirm equations (1.1), (1.2). The ratio R∗/r∗ is a quantity of order of 0.1
which cannot be measured precisely since the meniscus surface continuously turns
into the jet surface through some transition region whose boundaries are not defined
unequivocally. The quantity r∗ can be interpreted as a possible typical dimension of
this region.

The most remarkable features of the scaling laws (1.1) and (1.2) are their inde-
pendence of the liquid viscosity coefficient µ and liquid density ρ. A preliminary
explanation for this behaviour has been offered by Fernández de la Mora & Loscer-
tales (1994). They pointed out that parameters ρ and µ become irrelevant quantities
in (1.1) and (1.2) if the viscous forces are sufficiently large in comparison with the
inertial and capillary ones at the jet head. In this case, the jet velocity profile will be
nearly flat and independent of ρ and µ.

Reviews of numerous data and theoretical models for the cone-jet mode of elec-
trospray atomization have been published by Cloupeau & Prunet-Foch (1994) and
Grace & Marijnissen (1994). Mestel (1994a) considered electrohydrodynamic flows
through a conical meniscus at high Reynolds numbers and presented two models for
a boundary layer at the meniscus surface. Shtern & Barrero (1994, 1995) constructed
a model of a charged conical meniscus where the liquid velocity varies as 1/r (r is the
distance from the cone apex) and studied swirling regimes. Melcher & Warren (1971)
analysed a slender capillary jet pulled down under the electric field that was imposed
by a cylindrical electrode concentrically surrounding the jet. Gañán-Calvo (1997a, b)
discussed an extension of such a model to describe Taylor jets. Mestel (1994b, 1996)
considered a cylindrical capillary jet carrying surface charge in a constant tangential
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electric field and studied the jet stability for high and low Reynolds number flows.
Thus, almost all available theoretical models are either based on some preliminary
assumptions on the meniscus-jet shape and structure of electrohydrodynamic flow
through the meniscus and emitted jet, or do not consider all regions (meniscus,
jet and surrounding gas or vacuum) simultaneously. Although such approaches can
often be justified by experimental investigations, they cannot derive the integral elec-
trohydrodynamic picture of Taylor meniscus-jets from the basic principles of fluid
mechanics and electrodynamics. The most interesting model giving such a picture
(Fernández de la Mora 1992) describes the cone-jet mode with a negligible short
jet that opens into the spray infinitesimally close to the cone apex. This model has
successfully explained observed deflections of the cone angle from Taylor’s value of
49.29◦ as an effect of the space charge of the spray. However, it was developed for
the case of infinitely conductive liquids and, therefore, is not able to account for the
scaling laws (1.1)–(1.2).

The most typical feature of the cone-jet mode of electrospray atomization is a
sharp conical shape of the meniscus and the extreme thinness of the emitted jet. Its
diameter is many orders of magnitude smaller than meniscus dimensions, while the
jet length, i.e. the distance from the virtual cone apex to the point at which the jet
opens into a spray of droplets, is usually comparable to or even greater than the
meniscus dimensions. Such remarkable behaviour of the meniscus and jet suggests
that an appropriate theoretical description might be obtained by singular perturbation
methods directly from the basic equations of electrohydrodynamics. To do that, one
must reveal perturbation quantities that would be small enough under conditions of
electrospray experiments for which the cone-jet mode takes place.

Using the quantity r∗ as the characteristic length in the transition region between
the meniscus and jet, we can define the capillary (Ca), Weber (We), electrical Weber
(WeE), and charge mobility (Mo) numbers for that region:

Ca ≡ µu∗

γ
, We ≡ ρu∗2r∗

γ
, WeE ≡ εε0E

∗2r∗

γ
, Mo ≡ kiE

∗

u∗
. (1.3a–d)

Here ki is the electrical mobility of the ions which form the meniscus-jet charge, u∗
and E∗ are the effective scales of the liquid velocity and electric field strength in the
transition region. They are determined by

u∗ ≡ Q

r∗2
, E∗ ≡ I

Kr∗2
. (1.4a, b)

The non-dimensional numbers Ca, We, and WeE characterize the ratios of the viscous,
inertial, and electrical forces, respectively, to the surface tension force in the transition
region. Mo is the characteristic ratio in the transition region of the drift velocity of
electric charge to the liquid velocity.

Substituting (1.4) into (1.3) and taking into account the expression (1.2b) for r∗, we
can rewrite definitions (1.3) as

Ca =
η2/3

Π
, We = η2, WeE =

f2

ε
, Mo =

F

η
, (1.5a–d)

where Π , η, f, and F are independent non-dimensional parameters introduced by
Fernández de la Mora & Loscertales (1994):

Π ≡
(
ρεε0γ

2

Kµ3

)1/3

, η ≡
(
ρKQ

εε0γ

)1/2

, f ≡
(
εI2

γKQ

)1/2

, F ≡ fki

ε

(
ρ

ε0

)1/2

. (1.6)
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The relations (1.5) fix the physical significance of Π , η, f, and F . It is worth noting that
Π is an unique non-dimensional combination that depends only on the macroscopic
properties of the liquid and not on the current or flow rate. The parameter f can also
be interpreted as a non-dimensional current (Fernández de la Mora & Loscertales
1994) since its definition (1.6) can be rewritten in the form

f = I/Is, Is ≡ r∗σ∗u∗ = (γKQ/ε)1/2, σ∗ ≡ (ε0γ/r
∗)1/2, (1.7a–c)

where σ∗ and Is are Taylor’s characteristic values of the surface charge density and
surface current in the transition region. Because of this, it will be more convenient to
use f instead of WeE in the subsequent consideration.

Analysing the data published by Fernández de la Mora & Loscertales (1994), one
can come to the conclusion that their parameters Π , η, f, F and dielectric constant ε
fall into the ranges

0.07 6 Π 6 12, 0.5 6 η 6 11, 7 6 f 6 18, 0.09 6 F 6 0.86, 10 6 ε 6 111
(1.8)

for all the liquids that obey the scaling laws (1.1), (1.2). It is noteworthy that Π can
be ∼ 10 only for water solutions with ε ∼ 102, and f almost monotonically increases
with an increase in ε (Fernández de la Mora & Loscertales 1994). The large number
of governing parameters and their wide ranges do not allow an asymptotic analysis
of the meniscus-jet structure, applicable in all cases, to be carried out. Thus, one has
to consider various asymptotic regimes in the space of parameters (Ca, We, f, Mo, ε)
or (Π , η, f, F , ε) and study corresponding meniscus-jet structures for all cases. The
present paper deals with one such asymptotic regime for which

δ ≡We/f = η2/f � 1, (1.9)

while other parameters remain of the order of unity or may be much less (or
greater) than unity if their magnitudes satisfy definite conditions (see § 4). This case
corresponds to sufficiently low flow rates of the liquid since, taking into account (1.1)
and (1.6), one can rewrite (1.9) as follows:

δ = const.× Q, const. =
ρK

εε0γfexp(ε)
. (1.10)

Here, const. is completely determined by the liquid properties and therefore does not
change in experiments with the same liquid. For the smallest experimental values of
Q which correspond to values of η near η = 0.5, the definition (1.9) yields δ ≈ 10−2.

Section 2 of the paper introduces the non-dimensional variables and formulates
the closed system of differential equations and boundary conditions that describe the
problem in question. Section 3 derives simplified equations for the sufficiently thin jet.
Section 4 offers a method of solving the system of governing equations in the regions
of the meniscus, surrounding gas, and jet by means of asymptotic expansions in the
small parameter δ. The basic solution and equations for the leading perturbation are
derived. The solution to these equations is obtained and studied in § 5. The transition
region is analysed in § 6, which also contains a derivation of the scaling laws (1.1),
(1.2) from the theory developed. The physical meaning of the results obtained is
discussed in § 7. It also summarizes the main conclusions. To examine the problem
of the Taylor meniscus-jet structure, we use the techniques and terminology of fluid
mechanics perturbation theory (Van Dyke 1975).
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Figure 1. Sketch of coordinate systems and domains used for the meniscus-jet description. The
solid lines show the liquid–gas interface Σl = Σm∪Σtl∪Σj which is the union of the meniscus surface
Σm, jet surface Σj , and liquid surface Σtl lying inside the transition region Vt = Vtl∪Vtg . The dashed
circle represents a boundary between the transition region Vt and the outer region V = Vm∪Vg∪Vj ,
which is the union of the meniscus, gas, and jet domains (Vm, Vg , and Vj , respectively). The dashed
lines show the surface of Taylor’s cone with no jet.

2. Formulation of the problem
Consider an axisymmetric non-swirling flow of an electrified liquid through a nearly

conical semi-infinite meniscus whose apex emits a semi-infinite jet. It is convenient
to use coordinate systems and regions sketched in figure 1, where r̃, θ, χ and ỹ, χ, z̃
are spherical and cylindrical coordinates, respectively, Θ is the latitude of a point at
the meniscus-jet surface, and R̃ is the distance from this point to the symmetry axis.
Dimensional quantities are marked with tildes. The dashed lines show the conical
surface ΣT to which the meniscus surface asymptotically tends as z̃ → −∞, and α is
the semiangle of this cone. The dashed circle represents a relative boundary of the
transition region Vt = Vtl∪Vtg that lies between the meniscus domain Vm and the
jet domain Vj . Domains Vtl and Vtg consisting of the liquid and gas (or vacuum),
respectively, are parts of Vt. The gas domain Vg is the region of surrounding gas
(or vacuum) that is not included in the transition region Vt. The outer region
V = Vm∪Vg∪Vj lies outside the transition one. In figure 1, Σm and Σj are the
meniscus–gas and jet–gas interfaces, respectively; Σl is the surface of the liquid
domain Vl = Vm∪Vtl∪Vj; Σtl is a part of Σl lying inside the transition region Vt; Σc is
a geometrical cross-section of the meniscus or jet; n and N are the unit vectors normal
to Σl and Σc, respectively; s is the unit vector tangent to Σl along its generatrix, s̃ is
the distance along it.

The current I and the liquid flow rate Q are defined as

I = 2πR̃(j̃ s · s) +

∫
Σc(R̃)

(j̃b ·N )dΣc, Q =

∫
Σc

(ũ ·N )dΣc, (2.1a, b)

where j̃ s and j̃b are the surface and bulk current densities, respectively, ũ is the liquid
velocity, Σc is assumed to be a surface of revolution, and R̃ coincides with the radius
of the circle Σc ∩Σl . Equalities (2.1a,b) are valid at any cross-section Σc due to charge
and mass conservation laws; the liquid density ρ is considered to be constant. The
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quantities j̃ s and j̃b can be determined by the following relations:

j̃ s = σ̃(ũ+ ki(Ẽ · s)s), j̃b = KẼ (K = const.), (2.2a, b)

where σ̃ is the surface charge density and Ẽ is the electric field strength. Thus, ki is the
electrical mobility of the surface ions. Validity of (2.2) was confirmed by Fernández
de la Mora & Loscertales (1994) for all domains and all liquids that obey the scaling
laws (1.1) and (1.2), except for the domain Vj in the case of the least conducting
solutions of water and formamide.

2.1. Non-dimensional variables

In the case Q = 0 and I = 0, Taylor (1964) found an exact solution of the electrohy-
drostatic equations governing the equilibrium of an electrified meniscus. This solution
can be written in our variables as follows:

φ̃ = 0 in Vm, φ̃ = −
(

2γr̃

ε0 tan α

)1/2
Q1/2(cos θ)

Q′1/2(cos α)
in Vg, (2.3a, b)

σ̃ =

(
2ε0γ

r̃ tan α

)1/2

, Θ = α, R̃ = r̃ sin α. (2.4a–c)

Here φ̃ is the dimensional electric field potential; Q1/2 is the standard Legendre
function of degree 1/2 and order 0; Q′1/2 is the derivative of Q1/2 with respect to θ;

and α = 0.27π = 49.29◦ is the root of the equation Q1/2(cos α) = 0. Relation (2.4b)
determines the surface of the Taylor meniscus that turns out to be a cone of semiangle
α with no jet. Thus, domains Vt and Vj are absent, and the electric field strength at
semiaxis θ = π (or ỹ = 0, z̃ > 0) is given by

Ẽ(r̃, π) = −∂φ̃
∂r̃

= CT

(
γ

ε0z̃

)1/2

, CT =
1

(2 tan α)1/2

Q1/2(cos π)

Q′1/2(cos α)
= 0.67. (2.5a, b)

Taylor’s solution (2.3b), (2.4a) and the non-dimensional current definition (1.7)
suggest the following natural way to introduce non-dimensional variables r, y, z, R,
s, φ, E , D, σ, u, p, and pg related to the dimensional ones marked with tildes:

r = r̃/L, y = ỹ/L, z = z̃/L, R = R̃/L, s = s̃/L, φ = φ̃/φ◦, (2.6)

E = Ẽ/E◦, σ = σ̃/σ◦, D = D̃/σ◦, u = ũ/u◦, p = p̃/p◦, pg = p̃g/p
◦, (2.7)

φ◦ ≡
(
γL

ε0

)1/2

, E◦ ≡ φ◦

L
, σ◦ ≡ ε0E

◦, u◦ ≡ Is

Lσ◦
=

(
KQ

εε0L

)1/2

, p◦ ≡ γ

L
, (2.8)

where D is the electric displacement; p and pg are the pressure of the liquid and
surrounding gas, respectively; Is is determined by (1.7b); L is the primary reference
length in the outer region V = Vm∪Vg∪Vj; and the characteristic values of the other
quantities in the outer region are marked with circles.

Obviously, we cannot simply define L = r∗ because the meniscus dimensions and
jet length are much larger than r∗. The length L should be found while one is solving
the problem in question since neither this problem itself nor Taylor’s solution contains
any geometrical scale for the outer region. It is convenient and always possible to
choose the quantity L so that inertial, capillary, and electrical effects in the jet would
be finite at z̃ ∼ L as δ → 0. In § 3, we shall see that such a condition is fulfilled if we
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put

L ≡ δ−2/3r∗. (2.9)

2.2. Basic equations and boundary conditions

In formulating basic equations we shall use relations (2.2a,b) and the following
additional hypotheses:

(i) the liquid flow and electric field are steady state;
(ii) the surrounding gas is at rest and, therefore, its pressure pg is constant;
(iii) the liquid charge is concentrated at the meniscus-jet surface.

The first assumption corresponds to numerous observations of the cone-jet mode of
electrospray atomization, although it excludes unsteady-state processes and stability
problems from further consideration. The next one is justified by the ratio µg/µ
being small enough, where µg is the viscosity coefficient of the surrounding gas. In
conclusion, the third hypothesis is correct under the condition(

rD

R̃

)2

� 1

(
r2
D

=
ε ε0κT

(e2
+n+ + e2−n−)NA

)
, (2.10)

where rD is the thickness of Debye’s surface boundary layer in which the charge is
actually distributed; n± are the molar concentrations of ions in the liquid; e± are
the charges of ions; T is the liquid temperature; κ is Boltzmann’s constant; NA is
Avogadro’s number. The inequality (2.10) appears to be always fulfilled in electrospray
atomization. For example, by using the data published by Fernández de la Mora &
Loscertales (1994) one can verify that rD/R

∗ 6 0.1 for all liquids which were used in
their work to obtain scaling laws (1.1), (1.2).

The liquid flow through the meniscus, transition region, and jet as well as the
electric field distribution inside and outside the above regions are governed by the
electrohydrodynamics equations that can be written in non-dimensional variables
(2.6), (2.7) as follows:

∇ ·D = 0, E = −∇φ in Vk (k = l, g, tg), (2.11a, b)

D = εE in Vl; D = E in Vk (k = g, tg), (2.12a, b)

∇ · u = 0, δf(u · ∇) u = −∇p+ δ1/3Ca∇2u in Vl. (2.13a, b)

This system should be supplemented with non-dimensional boundary conditions at
Σl:

[φ]gl = 0, σ = [n ·D]gl , δ
d

ds

(
Rσ

(
u+

Mo

f
(s ·D)

))
= R(n ·Dl), (2.14a–c)

n · u = 0, δ1/3Ca

(
s · du

dn
+ n · du

ds

)
=
σ

ε
(s ·Dl) +

dΓ

ds
, (2.15a, b)

p− pg − 2δ1/3Ca n · du

dn
= − [(n · E)(n ·D)− 1

2
E ·D]g

l
+HΓ, (2.16)

where

Γ ≡ γs

γ
, H =

2

(r2 sin2 Θ)′

(
r sinΘ(r cosΘ)′

(1 + r2Θ ′2)1/2

)′
, R = r sinΘ(r). (2.17a–c)
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We also use the notations: [a]gl ≡ ag−al; al and ag are the values of any quantity a at
Σl inside and outside Vl , respectively; H is the normal curvature of the meniscus-jet
surface Σl; θ = Θ(r) is the equation for Σl in the spherical coordinates; γs is the
coefficient of meniscus-jet surface tension. Primes denote derivatives with respect to
r. If Σl is the surface of Taylor’s cone (2.4b), relation (2.17b) yields the following
expression for its mean normal curvature:

H =
1

r tan α
at ΣT . (2.18)

Boundary conditions (2.14a,c) express electric potential continuity and charge con-
servation at the interface Σl . Equation (2.14b) yields the surface charge density in
terms of the electric field jump at Σl . Equality (2.15a) means that the surface Σl
consists of liquid streamlines. Conditions (2.15b) and (2.16) express, respectively, the
balance of shear and normal stresses of the liquid, surrounding gas and electric field
at the interface Σl . While formulating the boundary conditions, we have used an
expression for the normal curvature of the surface of revolution (Dubrovin, Fomenko
& Novikov 1984). The last term in equation (2.15b) takes into account the surface
stresses in the case where the surface tension does not remain constant (Scriven 1960).
This term is usually negligible at the meniscus surface Σm since the value of γs is
almost equal to γ = const. at Σm. However, γs might be sufficiently larger than γ at
the surfaces Σtl and Σj of the transition liquid domain and jet due to the smallness
of their diametrical dimensions and very high level of the ion concentration in these
regions. The investigation of the liquid surface tension under such extreme conditions
is an independent problem that is not the goal of this paper. We assume that the ratio
Γ = γs/γ is the given constant for the jet and it is equal to unity for the meniscus:

Γ = 1 at Σm, Γ = const. at Σj. (2.19a, b)

Evidently, all results obtained below will also be valid in the case γs ≡ γ, if we put
Γ ≡ 1.

In conclusion, conditions (2.1) are rewritten in the non-dimensional form as follows:

2πδRσ

(
u+

Mo

f
(s ·D)

)
= δf −

∫
Σc(R)

(D ·N )dΣc,

∫
Σc

(u ·N )dΣc = δ. (2.20a, b)

Consideration of the problem in the infinite domains Vm, Vg and Vj requires some
conditions at r → ∞ to be imposed. The simplest form of such conditions seems to
arise from the assumption that the unknown solution of equations (2.11)–(2.16) (for
Q 6= 0 and I 6= 0) tends asymptotically to Taylor’s solution as r → ∞. In this case,
the radius and charge of the jet should vanish as z → ∞. Accordingly, one can write
down

φ→ 0, u→ 0 as r →∞ in Vm, (2.21a, b)

(σ − σT )/σT → 0, Θ → α as r →∞ at Σm, (2.22a, b)

(φ− φT )/φT → 0 as r →∞ in Vg∪Vj, (2.23)

Rσ → 0, R → 0 as r →∞ in Vj, (2.24a, b)
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where quantities φT , σT , and RT are a non-dimensional form of Taylor’s functions
(2.3b) and (2.4a,c):

φT = −2CTr
1/2Q1/2(cos θ)

Q1/2(cos π)
, σT =

(
2

r tan α

)1/2

, RT = r sin α, (2.25a–c)

and CT is the constant defined by (2.5b).

3. Governing equations for the thin jet
The theory of slender liquid jets is a discipline with a long history and a wide

variety of applications (Anno 1977). A nonlinear analysis of the breakup of uncharged
capillary jets has recently been performed by Eggers & Dupont (1994), Eggers (1995),
Papageorgiou (1995a, b). They derived a set of one-dimensional governing equations
for the jet directly from the Navier–Stokes equations.

It is more convenient, however, to use the integrated form of energy equation in
asymptotic analysis of charged jets:[∫

Σ2

−
∫
Σ1

] {(
1
2
δfu2 + p

)
(u ·N )− 2δ1/3Ca(u · e ·N )

}
dΣc

=

∫
Σ12

σ

ε
(s ·Dl)udΣj − 2δ1/3Ca

∫
V12

(e · e)dVj, (3.1)

where

(u · e ·N ) = uaeabN
b, (e · e) = eabe

ab, eab = 1
2
(∇aub + ∇bua), (3.2a–c)

ua, N
b, eab are components of the vectors u, N and second-order strain rate tensor

e, respectively; ∇a is the covariant derivative (a, b = 1, 2, 3); Σ2 and Σ1 are any two
positions of the cross-section Σc within the domain Vj , Σ2 being to the right of Σ1

(see figure 1); Σ12 and V12 are parts of Σj and Vj , that lie between the cross-sections
Σ1 and Σ2. To obtain equation (3.1) one should multiply relation (2.13b) scalarly by
u and then integrate it over the volume V12 using Gauss’ theorem and taking into
account continuity equation (2.13a) and conditions (2.15a,b), (2.19b).

3.1. Infinitesimally thin jet

We shall study the liquid flow through the jet in the asymptotic limit R → 0. In this
case the domain Vj becomes one-dimensional and the partial differential equations
that govern the liquid flow can be reduced to ordinary ones. To do that one should
expand the unknown solution to those equations into power series in the radial
coordinate y (Eggers & Dupont 1994). Thus, we shall use the following expressions
for u, p, and φ in the domain Vj:

uz = u0(z) + 1
2
y2u2(z) + O (y4), (3.3a)

uy = − 1
2
yu′0(z) + O(y3)

(
u′0(z) = du0/dz

)
, (3.3b)

p = p0(z) + 1
2
y2p2(z) + O (y4), (3.3c)

φ = φ0(z) + 1
2
y2φ2(z) + O (y4), (3.3d)

where uy and uz are, respectively, the radial and axial components of the liquid
velocity in cylindrical coordinates y, χ, z, and relation (3.3b) follows from (2.13a) and
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(3.3a). In this case, equations (3.2b,c) yield

eyy = eχχ = −ezz
2

= −u
′
0

2
+ O(y2), eyz =

y

2

(
u2 − u′′0

2

)
+ O(y3), (3.4)

eyχ = eχz = 0, (e · e) = e2
yy + e2

χχ + e2
zz + 2e2

yz = 3
2
u′20 + O(y2), (3.5)

where eyy, eχχ, ezz , eyz , eyχ, and eχz are the physical components of tensor e in
cylindrical coordinates y, χ, z.

Eliminating the term H from equation (2.16) by means of (2.17b) and then substi-
tuting expansions (3.3) into (2.16), (3.1), and (2.20) we derive the following relations
for leading terms u0, p0, φ0 in the jet in the limit R → 0:

p0 − pg + δ1/3Ca u′0 = − 1
2
(σ2 + (ε− 1)φ′20 ) +

Γ

R
, (3.6)

[(
1
2
δfu2

0 + p0 − 2δ1/3Ca u′0
)
R2u0

]z2

z1
=

∫ z2

z1

(
−2σφ′0Ru0 − 3δ1/3CaR2u

′2
0

)
dz, (3.7)

2πδRσ

(
u0 − εMo

f
φ′0

)
= δf + πεR2φ′0, πR2u0 = δ, (3.8a, b)

where primes denote derivatives with respect to z. We have also used expressions
(2.11b), (2.12) for quantities E , D (in equations (2.16), (3.1), and (2.20a)), eliminated
(Dg · n) by means of (2.14b) and taken into account relations (2.14a), and (3.5).

Replacing integral equation (3.7) with differential one at z1 → z2 and then elimi-
nating quantities p0 and R from it by means of equations (3.6) and (3.8b), we obtain
(after some algebraic transformations) the final equations to describe the jet in the
asymptotic limit R → 0:(

1
2
(δu0)

2 +
Γ

f
(πδu0)

1/2 − δ

2f

(
σ2 + (ε− 1)φ′20

))′
= −qu0

f
φ′0 +

3δ1/3Ca

f
(δu0)

(
u′0
u0

)′
, (3.9)

qu0

f

(
1− εMo

fu0

φ′0

)
= 1 +

ε

fu0

φ′0, πR2u0 = δ, q ≡ 2πRσ, (3.10a–c)

where q is the charge per unit length of the jet. To derive (3.10a), we have also
eliminated the jet radius R from the right-hand side of (3.8a) by means of (3.8b).
Equations (3.6), (3.9), (3.10) form a closed system for the unknowns p0, u0, σ, R, q, if
φ0(z) is given. At σ = q = φ0 ≡ 0 relations (3.6), (3.9), (3.10b) are equivalent to those
obtained by Eggers & Dupont (1994). It is noteworthy that relations (3.6) and (3.10)
are simple algebraic equations to express quantities p0, σ, R, q, in terms of u0(z) and
φ0(z). Therefore, only equation (3.9) for u0(z) has to be solved. We shall see that it is
simplified greatly in the limit δ → 0.

The functions φ0(z) and q(z) must obey the conditions of asymptotic matching
with the electric potential φ(r, θ) outside the jet:

φ(r, θ)→ φ0(z), 2π sin θ
∂φ

∂θ
→ q(z) as r = z, π− θ =

R

z
→ 0. (3.11a, b)

These relations follow from boundary conditions (2.14a,b) and expansion (3.3d).
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3.2. Small Weber numbers

We shall study the asymptotic limit δ ≡ We/f → 0 which may correspond to
sufficiently small values of the Weber number We ≡ η2. For the smallest values of η
from the range (1.8), the meniscus shape observed in experiments almost coincides with
the cone of Taylor’s semiangle α (Fernández de la Mora 1992). Given that fact, we shall
seek such asymptotic solutions of equations (2.11)–(2.16) for which the basic solution,
i.e. zeroth approximation, is Taylor’s one. Equations (2.14) and (2.20) suggest that
the leading perturbations of the electric field in the liquid meniscus and surrounding
gas are of the order of δ as δ → 0. In this case, condition (3.11b) yields q ∼ δ since
Taylor’s solution is regular as θ → π. As a result, we obtain from (2.15b) and (3.10):

u ∼ δ2/3

εCa
at r ∼ 1 in Vm; u0 ∼ 1

δ
, R ∼ δ at z ∼ 1 in Vj. (3.12a, b)

Thus, the first (inertial) and second (capillary) terms on the left-hand side of (3.9)
and the first (electrical) term on the right-hand side of (3.9) remain finite as δ → 0.

It is noteworthy that the reciprocal of the quantity δ1/3Ca/f, that appears in (3.9),
can be interpreted as the Reynolds longitudinal number of the jet which is constructed
as follows:

Re‖ ≡ ρũjL

µ
=

f

δ1/3Ca
, ũj ≡ u◦

δ
, (3.13)

where the dimensional quantities L and u◦ are defined by relations (2.9) and (2.8).
Taking into account estimation (3.12a), we can also find the Reynolds number for
the meniscus at r ≡ r̃/L ∼ 1:

Rem ≡ ρũmL

µ
=
δ4/3f

εCa2
, ũm ≡ δ2/3

εCa
u◦. (3.14)

Since

Re‖ → ∞, Rem → 0 as δ → 0 and Ca, f, ε = const., (3.15)

we can expect that the last (viscous) term in (3.9) and the first (inertial) term in
(2.13b) for the meniscus are negligible.

4. Outer asymptotic expansions and equations
Let us seek an asymptotic solution of equations (2.11)–(2.16) in the domains Vm

and Vg in the form

D = Dm0 + δDm1 + o (δ4/3), E = Em0 + δEm1 + o (δ4/3)

φ = φm0 + δφm1 + o (δ4/3), u = U 0 +
δ2/3

εCa
U 1 + δU 2 + o (δ)

p = P0 +
δ

ε
P1 + δ4/3CaP2 + o (δ4/3)


in Vm, (4.1)

Θ(r) = Θ0 + δΘ1 + o (δ), σ(r) = σ0 + δσ1 + o (δ) at Σm, (4.2)

φ = φg0 + δφg1 + o (δ), D = E = Eg0 + δEg1 + o (δ) in Vg. (4.3)

It should be recalled here that we use the spherical coordinates r, χ to mark points
at the meniscus surface Σm as we write down its equation in the form θ = Θ(r).
Thus, the perturbations of the meniscus latitude Θ and surface charge density σ are
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calculated at r = const. in (4.2). If the unperturbed meniscus coincides with Taylor’s
cone, i.e. Θ0 = α, the product rΘ1 will represent the (scaled) normal displacement of
the meniscus surface ΣT as δ → 0 and r = const.

We shall also seek an asymptotic solution of equations (3.6), (3.9)–(3.11) at the
semiaxis θ = π which replaces the domain Vj in the limit R → 0 in the form

u0 =
1

δ
(Uj + o (1)), p0 =

1

δ
(Pj + o (1))

R = δ(Rj + o (1)), σ = σj + o (1)

q = δ(qj + o (1)), φ0 = φg0 + ∆φ(δ)Φ+ o (∆φ)

 at θ = π. (4.4)

Here, ∆φ(δ) is the gauge function that tends to zero as δ → 0 and is determined in
the course of solving the problem. Since it is described by parameters Ca, f, Mo, ε,
and Γ besides δ, one must specify their limiting behaviour as δ → 0. We assume that
the quantities

1

Re‖
≡ δ1/3Ca

f
, ∆ ≡ δ2/3

εCa
, (4.5a , b)

which appear in relations (3.9) and (3.12a), respectively, also tend to zero:

Re−1
‖ = o (1), ∆ = o (1) as δ → 0, (4.6a , b)

while f, Mo, ε, and Γ remain bounded. According to (3.12a) and (4.1), relation (4.6b)
means that the velocity perturbation vanishes in the meniscus at small δ as it should
since the electric field distribution tends to Taylor’s equilibrium distribution as δ → 0.

Obviously, conditions (4.6) are fulfilled if Ca = const. as δ → 0. But this restriction
is not necessary. They may also be valid if Ca tends to zero or infinity at appropriate
relative rates. For example, conditions (4.6) are fulfilled if Ca scales as δ1/3. This case
corresponds to Π = const. as δ → 0 since (1.5) and (1.9) yield Ca = δ1/3f1/3Π−1,
where the non-dimensional parameter Π depends only on the liquid properties (see
(1.6)). Taking into account (1.5a) and (1.8), one can readily verify that Re−1

‖ � 1,
∆� 1, δ � 1 for all values of Π, f, ε from ranges (1.8) if η is near its smallest value
from (1.8).

It should be emphasized that the leading perturbation of the jet parameters u0, p0, σ
does not vanish as δ → 0 (see (4.4)). The same is true for the perturbation of E · n
at the jet surface Σj , although the perturbation of φ at Σj vanishes. Yet, the region
in which those non-vanishing perturbations are concentrated does vanish as δ → 0
since the radius and charge of the jet tend to zero according to expansions (4.4). Such
behaviour is a typical feature of singular perturbation problems (Van Dyke 1975).

4.1. Equations for the leading perturbation in Vm∪Vg
Let us substitute expansions (4.1)–(4.3) into equations (2.11)–(2.16), (2.20), (2.21)–
(2.23) and take into account relations (2.17b,c), (2.19a) and conditions (4.6). As a
result, first of all, we find the basic solution (zeroth approximation in δ) to coincide
with Taylor’s one:

φm0 = Em0 = Dm0 = 0, U 0 = 0, P0 = pg in Vm; (4.7a–c)

σ0 = σT , Θ0 = α at Σm; (4.8a, b)

φg0 = φT , Dg0 = Eg0 = −∇φT in Vg. (4.9a, b)
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Then we obtain that the (scaled) leading perturbation (first approximation in δ)
must satisfy a system of simplified relations. It includes the governing equations in
the meniscus and gas domains:

∇ ·Dm1 = 0, Em1 = −∇φm1, Dm1 = εEm1 in Vm, (4.10a–c)

∇ ·U k = 0, 0 = −∇Pk + ∇2U k in Vm (k = 1, 2), (4.11a, b)

∇ · Eg1 = 0, Eg1 = −∇φg1 in Vg; (4.12a, b)

the boundary conditions at the meniscus surface:

φg1 − rσTΘ1 = φm1, σ1 = n · Eg1 − σTΘ1

tan α
, 0 = n ·Dm1 at ΣT , (4.13a–c)

n ·U 1 = 0, s · dU 1

dn
= σT (s ·Dm1), n ·U 2 = 0, s · dU 2

dn
= 0 at ΣT , (4.14a–d)

1

ε

(
P1 − 2n · dU 1

dn

)
= −σT (n · Eg1) +

Θ1

r tan2 α
− 1

r
(r(rΘ1)

′)′ at ΣT ; (4.15)

the integral conditions at the cross-section Σc:∫
Σc

(Dm1 ·N )dΣc = f,

∫
Σc

(U 1 ·N )dΣc = 0,

∫
Σc

(U 2 ·N )dΣc = 1; (4.16a–c)

and the limiting conditions at infinity:

φm1 → 0, U 1 → 0, U 2 → 0 as r →∞ in Vm, (4.17a–c)

σ1/σT → 0, Θ1 → 0 as r →∞ at ΣT , (4.18a, b)

φg1/φT → 0 as r →∞ in Vg. (4.19)

It should be observed that conditions (4.13)–(4.15) are already formulated at the
unperturbed surface of Taylor’s cone ΣT .

While deriving the boundary conditions for the leading perturbation, we have taken
into account Taylor’s field shift due to the perturbation of the meniscus surface Σm:

φT

∣∣∣
θ=Θ(r)

= φT

∣∣∣
θ=α

+ δΘ1

∂φT

∂θ

∣∣∣
θ=α

= −δrσTΘ1, (4.20a)

(
n · ET

)
θ=Θ(r)

=
(
n · ET

)
θ=α

+ δΘ1

(
n · ∂ET

∂θ

)
θ=α

= σT − δσTΘ1

tan α
. (4.20b)

These expressions follow directly from general properties of Taylor’s field:

ET = −∇φT , ∇ · ET = 0 in Vg; φT = 0, σT = n · ET at ΣT ; (4.21)

with allowance for the fact that δrΘ1 is the meniscus surface perturbation along
the normal n. As a result, the additional terms proportional to Θ1 have appeared in
(4.13a,b) and (4.15).

4.2. Equations for the leading perturbation in Vj

Now let us substitute expansions (4.4) into equations (3.6), (3.9)–(3.11), and (2.24),
make use of relations (2.19b) and (4.6), and take into account the expression for
Taylor’s field at the semiaxis z > 0 (i.e. at θ = π):

−φ′g0 = −φ′
T

= CTz
−1/2 (CT = 0.67) (4.22)
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that follows from (4.9a), (2.25a), and (2.5b). As a result, we find that the functions
Uj, Pj, Rj, σj , qj , Φ must obey the governing equations at z > 0:(

1

2
U2
j +

Γ

f
(πUj)

1/2

)′
= CTz

−1/2, (4.23)

Pj =
Γ

Rj
, qjUj = f, πR2

j Uj = 1, qj = 2πRjσj; (4.23a–d)

the conditions of matching with the gas domain solution:

δφg1(r, θ)→ ∆φΦ(z), 2π sin θ
∂φg1

∂θ
→ qj(z) as r = z, π− θ =

δRj

z
→ 0; (4.24a, b)

and the conditions at infinity:

qj → 0, Rj → 0 as z →∞. (4.25a, b)

All functions in equations (4.23), (4.24) are defined at the semiaxis z > 0 which
replaces the jet domain Vj in the limit δ → 0, and primes denote derivatives with
respect to z. Equation (4.23) takes into account the liquid inertia (the term with U2

j ),

surface tension (the term with Γ ), and electrical force (the term CTz
−1/2).

Relation (4.24b) means that the jet is free from charge relaxation effects. It should
be emphasized that the original equations ((2.2) for the surface and bulk currents
and (2.14c), (2.20a) for the surface charge) take into account the bulk conductivity
and the surface ion mobility. They remain in the general equation (3.10a) for the jet
charge. However, the perturbation theory yields that this equation will be free from
charge relaxation effects in the first approximation in δ. Such behaviour is due to
the fact that the radius and velocity of the jet tend to zero and infinity, respectively,
as δ → 0 while its surface charge density and electric field remain finite. As a result,
the current of ions from the electric field vanishes in the jet, and all of its current is
carried by the flow of liquid.

It is also worth noting that (3.3a,d) and (3.12b) yield uz ∼ 1/δ, Eθ ∼ R ∼ δ inside
the jet. Taking into account these estimations and making use of (1.2b), (2.8), and
(2.9), one can readily verify that τe/τh → ∞ as δ → 0, where τe ∼ σ◦/(KẼθ) is the
electric relaxation time for the jet and τh ∼ L/ũz is its hydrodynamic time. Here,
ũz = u◦uz and Ẽθ = E◦Eθ are the dimensional components of the liquid velocity and
electric field inside the jet; E◦ and u◦ are defined by (2.8).

5. Asymptotic analysis of the outer region
To obtain more detailed information on the structure of the meniscus and jet, one

has to solve equations (4.10)–(4.19), (4.23)–(4.26).

5.1. Electric field and liquid velocity inside the meniscus

The remarkable feature of the leading perturbation is the fact that equations (4.10)–
(4.19) allow one to obtain the electric field distribution in Vm without finding the
liquid velocity. Indeed, their ‘electrical’ part (see (4.10), (4.13c), (4.16a), and (4.17a)) is
independent of the liquid flow and can be readily solved:

φm1 = −Af
ε r
, Dm1 = εEm1 = −Afr

r3
in Vm

(
A ≡ 1

2π(1− cos α)
= 0.46

)
. (5.1a, b)

The flow in Vm is governed by the Stokes equations (4.11b) with boundary conditions
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(4.14) in which Dm1 is known and determined by (5.1b). Given (4.11a) at k = 1, the
components of vector U 1 can be expressed in terms of the stream function ψ(r, θ):

U1r =
−1

r2 sin θ

∂ψ

∂θ
, U1θ =

1

r sin θ

∂ψ

∂r
, (5.2a, b)

where ψ is regular at θ = 0. The functions ψ and P1 satisfy the linear differential
equations (Happel & Brenner 1965)

D̂2ψ = 0

(
D̂ ≡ ∂2

∂r2
+

sin θ

r2

∂

∂θ

1

sin θ

∂

∂θ

)
, (5.3)

∂P1

∂r
=
−1

r2 sin θ

∂D̂ψ

∂θ
,

∂P1

∂θ
=

1

sin θ

∂D̂ψ

∂r
, (5.4a, b)

which follow from (5.2) and (4.11b) at k = 1. Substituting (5.2) into (4.14a,b) and
(4.16b), taking into account (2.25b), (5.1b), and making use of the regularity require-
ments at θ = 0, we derive the boundary conditions to equations (5.3), (5.4):

ψ = 0,
∂

∂θ

1

sin θ

∂ψ

∂θ
= Bfr1/2 at θ = α

(
B ≡ (2/ tan α)1/2

2π(1− cos α)
= 0.60

)
; (5.5a, b)

ψ = 0,
∂ψ

∂θ
= 0 at θ = 0. (5.6a, b)

The solution that satisfies (5.3)–(5.6) and (4.17b) is obtained in the Appendix and
given by

ψ =
Bfr1/2 sin θ

4

(
P ′−1/2(cos θ)

P ′−1/2(cos α)
− P ′3/2(cos θ)

P ′3/2(cos α)

)
, P1 = − 3BfP3/2(cos θ)

2r5/2P ′3/2(cos α)
, (5.7a, b)

where P−1/2 and P3/2 are the standard Legendre functions of degree −1/2 and 3/2,
respectively, and primes denote the derivatives with respect to θ. The stream function
(5.7a) describes a fluid circulation induced by the electrical shear stress at the surface
of the conical meniscus. The liquid moves towards its apex along generatrices and
returns back along the meniscus axis. Such flows inside Taylor cones are observed in
numerous experiments (Hayati, Bailey & Tadros 1986, 1987). Finally, (4.11) at k = 2,
(4.14c,d), (4.16c), and (4.17c) yield the velocity and pressure of the sink flow of an
inertialess fluid for U2 and P2:

U2r = −A
r2
, U2θ = 0, P2 = 0 (A = 0.46), (5.8a–c)

where A is the constant defined by (5.1).
Substituting (5.2) and (5.8) into expansion (4.1) for u, taking into account (4.7b) and

(5.7a) and making necessary evaluations one can find the non-dimensional velocity
u at any point inside the meniscus domain Vm. For example, the values of ur at the
surface Σm (θ = α+ δΘ1) and semiaxis z < 0 (θ = 0) are given by (see the Appendix)

ur|Σm = −0.146
δ2/3f

εCa r3/2
− 0.46

δ

r2
, ur|θ=0 = 0.154

δ2/3f

εCa r3/2
− 0.46

δ

r2
. (5.9a, b)

Figure 2(a) shows a qualitative pattern of streamlines of the u-field mentioned above.
The most interesting feature is a stagnation point located at the symmetry axis at
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Vm

uz

z0

ªT

d–1

b

Vg

z

0

0zu z0

um

z

z1

(a) (b)

Figure 2. The streamlines of the u-field at θ 6 α (a) and the liquid velocity uz at the meniscus-jet
axis (b). The solid lines in (b) demonstrate the behaviour of the first-order solution: uz = −ur(r) at
z < 0 and uz = Uj/δ at z > 0, where ur and Uj are determined by (5.9b) and (5.12). Dependences of
the characteristic coordinates z0, zu, um on the parameters δ, Ca, f, ε are given by (5.10) and (5.11);
z1 = 1.75(0.28 + Γ/f)2, tan β = 0.57f2/(δΓ 2). The dashed line in (b) shows the linear interpolation
of the liquid velocity over the transition region.

z = z0, where z is the axial coordinate defined in § 2 and z0 is given by

z0 = −8.87δ2/3

(
εCa

f

)2

. (5.10)

It should be recalled here that the meniscus and jet characteristics scale in different
ways (see (4.1)–(4.4)). As a result, if we want to compare their behaviour, it is
more convenient to use qualitative representations rather than plots calculated for
some fixed values of δ, Ca, f, ε, Γ . For example, the behaviour of the function
uz(z) ≡ −ur(r, 0) along the meniscus axis θ = 0 is shown in figure 2(b) (the solid line
at z < 0), ur(r, 0) being given by (5.9b) with r = −z. The liquid moves back from the
apex at z < z0 (z0 is defined by (5.10)). The magnitude of the backward flow velocity
has the maximum |um| at z = zu, where

um = −0.001δ−1/3

(
f

εCa

)4

, zu = −15.77δ2/3

(
εCa

f

)2

. (5.11a, b)

The points with coordinates z = z0 and z = zu belong to the transition region if
(εCa/f)2 is of the order of , or smaller than 10−1. In this case, relations (5.10) and
(5.11) can only provide quantitative estimates for z0, zu and um.

It is worth noting that, although the small parameter δ is proportional to the liquid
density ρ, the latter does not affect dimensional distributions of the electric potential,
velocity, and pressure inside the meniscus, to the leading order. Indeed, according
to (2.8) and (2.9), the quantities L, φ◦, u◦, and p◦ which appear in the definitions
of non-dimensional variables (2.6), (2.7) are proportional to ρ−2/3, ρ−1/3, ρ1/3, and
ρ2/3, respectively. The functions φm1, U 1, P1, and U 2 determined by (5.1), (5.2), (5.7),
and (5.8) are again proportional to r−1, r−3/2, r−5/2, and r−2, respectively, where
r ≡ r̃/L. As a result, a dimensional form of the solutions obtained for the electric
potential, velocity, and pressure does not depend on the liquid density. Obviously,
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the liquid viscosity µ affects, to the leading order, only the velocity distribution inside
the meniscus. Indeed, the definitions of non-dimensional variables (2.6), (2.7) do not
contain the liquid viscosity. It appears only in definition (1.3a) for the capillary
number Ca. The latter, in turn, affects only the asymptotic expansion (4.1) for the
liquid velocity.

5.2. Characteristics of the jet

Integrating (4.23), we have

1

2
U2
j +

Γ

f
(πUj)

1/2 = 2CTz
1/2. (5.12)

Generally speaking, an arbitrary additive constant could appear in (5.12). However,
such a constant should be omitted as we consider the leading perturbation in the jet
domain. Indeed, the jet velocity uz = Uj/δ should be matched with the velocity in
the transition domain Vt, where r ∼ r∗/L ≡ δ2/3 and uz ∼ δ−1/3 due to (2.20b). As a
result, Uj ∼ δ2/3 at z ∼ δ2/3, and both sides of (5.12) turn out to be of the order of
δ1/3 at z ∼ δ2/3. Hence, the arbitrary constant in (5.12) would be of the order of δ1/3

as well and must vanish as δ → 0. The relationship (5.12) determines the function
Uj(z) in the implicit form and yields the following asymptotics for Uj(z):

Uj =
4C2

T
f2

πΓ 2
z + o(z) as z → 0, Uj = 2C1/2

T
z1/4 + o (1) as z →∞. (5.13a, b)

The behaviour of the function uz = Uj/δ along the jet is shown in figure 2(b) (the
solid line at z > 0). Evidently, the velocity distribution uz(z) represented by solid lines
in figure 2 is not valid at sufficiently small |z|, which indicates that outer expansions
(4.1)–(4.4) fail in the transition region.

The exact explicit expression for Uj(z) can be obtained from (5.12) as a solution by
radicals. Unfortunately, it is too bulky and cannot be used directly in the subsequent
asymptotical analysis. For this reason, one has to employ approximate analytical
expressions for Uj(z) whose asymptotics, however, must coincide with equations
(5.13). One of the simplest such expressions is given by

Uj =
4C2

T
f2z

πΓ 2 + 2C
3/2
T f2z3/4

(5.14)

with a relative error of several per cent (depending on values of f and Γ ) for finite z.
It is also worth noting that the asymptotic expansions for (5.14) coincide with those
for the exact Uj-expression only to the leading order. Thus, applying expression (5.14)
as z → 0 or z → ∞, we can use no additional terms in asymptotic expansions for
(5.14) but only the leading ones.

As Uj(z) is known, equations (4.24) immediately yield Pj, Rj, qj , σj in terms of
Uj(z):

Pj = Γ (πUj)
1/2, Rj =

1

(πUj)1/2
, qj =

f

Uj

, σj =
f

2(πUj)1/2
. (5.15a–d)

It should be observed that (5.15b,c) automatically satisfy limiting conditions (4.26).
Finally, substituting (5.15) into (4.4), we obtain all the characteristics of the jet, to
the leading order, except for the electric potential. To find it, we should examine the
electric field distribution in the surrounding gas.
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5.3. Electric field in the gas domain; meniscus shape

The functions φg1, Eg1 in the asymptotic expansion (4.3) for electric field in the gas
domain Vg satisfy the equations

∇2φg1 = 0, Eg1 = −∇φg1, (5.16a, b)

which follow from (4.12). Substituting the expressions (2.25b) and (5.1a) for σT and φm1

into (4.13a), we obtain the following boundary condition to (5.16a) at the meniscus
surface:

φg1 −
(

2r

tan α

)1/2

Θ1 = −Af
εr

at θ = α, (5.17)

where A is the constant defined by (5.1). Condition (5.17) contains the unknown
function Θ1(r); therefore one more equation at θ = α is required. To formulate it,
we should calculate the left-hand side of (4.15) using the derived distributions of the
velocity and pressure in the meniscus (see the Appendix). Substituting (A 14) into
(4.15) and taking into account expressions (2.25b) and (5.16b) for σT and Eg1, we have

Cf

εr5/2
=

(
2

tan α

)1/2
1

r3/2

∂φg1

∂θ
+

Θ1

r tan2 α
− 1

r
(r(rΘ1)

′)′ at θ = α, (5.18)

where C is the constant given by (A 16). Finally, there are two more asymptotic
conditions (4.25), which take into account the jet charge. Substituting (5.15c) into
(4.25b), using the approximation (5.14) for Uj(z), and recalling that z = r at θ = π,
we obtain

2π sin θ
∂φg1

∂θ
→ πΓ 2

4C2
T
fr

+
f

2C
1/2
T r1/4

as θ → π, (5.19)

where CT is the constant determined by (2.5b). If the exact value of Uj(z) following
from (5.12) was used in (5.15c), the right-hand side of (5.19) would become much more
cumbersome. In this case we still could generalize the subsequent analysis making use
of the Mellin transform. Such generalization would have no effect on the asymptotic
behaviour of the meniscus-jet characteristics at small and large r. However, it would
greatly complicate the consideration by involving the Legendre functions of complex
degrees.

We shall seek the solution to the problem (5.16a), (5.17)–(5.19) in the form

φg1 = r−1L−1(cos θ) + r−1/4L−1/4(cos θ), Θ1 = C1r
−3/2 + C2r

−3/4, (5.20a, b)

where C1 and C2 are constant, L−1 and L−1/4 are general solutions to the Legen-
dre equations of degrees −1 and −1/4, respectively, to which (5.16a) is reduced by
substitution (5.20). As a result, (5.20) will satisfy the Laplace equation (5.16a). Ob-
viously, (5.20) also automatically satisfy the limiting conditions (4.18b) and (4.19) as
r →∞. Functions L−1 and L−1/4 can be represented as the linear combinations of the
particular solutions of the Legendre equations (Abramovitz & Stegun 1964):

L−1 = A1 + B1 ln
1 + cos θ

1− cos θ
, L−1/4 = A2P−1/4(− cos θ) + B2P−1/4(cos θ), (5.21a, b)

where A1, B1, A2, B2 are constant, and P−1/4(cos θ) is the standard Legendre function
which is regular at θ = 0 and logarithmically singular at θ = π:

P−1/4(cos 0) = 1, P−1/4(cos θ)→ −
√

2

π
ln(π− θ) + const. as θ → π. (5.22a, b)
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It follows from (5.22) that P−1/4(cos θ) and P−1/4(− cos θ) are linearly independent. To
find the unknown constants in (5.20b) and (5.21), let us replace the functions L−1 and
L−1/4 in (5.20a) by their expressions (5.21) and then substitute (5.20) into conditions
(5.17)–(5.19), taking into account (5.22). As a result, (5.19) yields

B1 = − Γ 2

16C2
T
f

= −0.14
Γ 2

f
, B2 =

f

4(2CT )1/2
= 0.22f, (5.23a, b)

and (5.17), (5.18) are reduced to the system of linear algebraic equations for A1, A2,
C1, C2. After straightforward calculations, we obtain its solution

A1 = 0.74
f

ε
− 1.06

Γ 2

f
, A2 = −1.47f, (5.24a, b)

C1 = 0.92
f

ε
− 0.97

Γ 2

f
, C2 = −1.34f, (5.25a, b)

where we have used expressions (5.1) and (A16) for the constants A and C and
evaluated all the coefficients that depend only on π and α = 49.29◦.

Now we are able to find the term ∆φ(δ)Φ in expansion (4.4) for the electric potential
of the jet. Substituting (5.20a) into (4.25a) and taking into account (5.21)–(5.23), we
obtain, to the leading order,

∆φ = −δ ln δ, Φ =
Γ 2

8C2
T
fz

+
f

4πC
1/2
T z1/4

. (5.26a, b)

This expression for Φ coincides with the right-hand side of (5.19) divided by 2π, which
is not surprising since the asymptotic conditions (4.25) yield

∆φ(δ)Φ = −(δ ln δ)
qj

2π
(5.27)

for any function φg1(r, θ) that is logarithmically singular as θ → π.
Relations (5.20)–(5.25) and (5.26b) determine the (scaled) leading perturbations of

the latitude (at the meniscus surface) and electric potential (in the surrounding gas
and along the jet). Using them in the asymptotic expansions (4.2)–(4.4) and taking
into account the basic solution (4.8b), (4.9), we can calculate the total potential of the
jet:

φ = −2CTz
1/2 − (δ ln δ)

(
Γ 2

8C2
T
fz

+
f

4πC
1/2
T z1/4

)
at z > 0, (5.28)

and the meniscus shape (in the spherical coordinates):

θ = Θ(r), Θ = α+ δ
(
C1r

−3/2 + C2r
−3/4
)
, (5.29a, b)

where the coefficients C1, C2 are determined by (5.25). The dependence of the meniscus
radius R on the axial coordinate z is expressed in the parametric form as follows:

R = r sinΘ(r), z = −r cosΘ(r) at Σm, (5.30a, b)

where the function Θ(r) is given by (5.29b) and r can be treated as a parameter.
On the other hand, substituting (4.7a), (5.1a), and (5.15b) into expansions (4.1), (4.4)
and making use of (5.14), we readily obtain the electric potential at the meniscus
symmetry axis and the jet radius:

φ =
δAf

εz
at z < 0, R = δ

(
Γ 2

4C2
T
f2z

+
1

2πC
1/2
T z1/4

)1/2

at Σj. (5.31a, b)
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Figure 3. The meniscus-jet shape. The solid lines show, to the leading order, the meniscus and jet
profiles which follow from (5.29) and (5.31b). The dashed-dotted line corresponds to Taylor’s cone
of semiangle α = 49.29◦. The dashed line extrapolates the meniscus profile determined by (5.29) into
the transition region. Dependences of the characteristic coordinates zm and zδ on the parameters δ,
f, ε, Γ are given by (5.32) and (6.2).
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Figure 4. The electric potential (a) and the normal component of the outer electric field at the
meniscus-jet surface (b). The solid lines demonstrate the behaviour of the first-order solutions φ(z),
En(z) which are determined by (5.31a), (5.33) for the meniscus and by (5.28), (5.36) for the jet. The
dashed-dotted lines show Taylor’s potential at the semiaxis θ = π (a) and the value of En at the
surface of Taylor’s cone with no jet (b). Dependences of the characteristic coordinates Em and zE
on the parameters δ, f, ε, Γ are given by (5.35). The dashed lines show the linear interpolation of
the electric potential and normal electric field over the transition region.

Figure 3 demonstrates the meniscus-jet shape which follows from (5.29) (or (5.30))
and (5.31b). The solid lines at z < 0 and z > 0 show the meniscus and jet profile,
respectively. The dashed-dotted lines demonstrate the profile of Taylor’s cone. It
should be observed that the meniscus surface latitude Θ is a little less than Taylor’s
angle α at z < zm and larger than α at z > zm, where

zm = −
(

0.50

ε
− 0.53Γ 2

f2

)4/3

. (5.32)
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Figure 4(a) shows the electric potential distribution (solid lines) which is determined
by (5.28) and (5.31a) at the meniscus-jet axis. The dashed-dotted line demonstrates
Taylor’s potential at the semiaxis z > 0, which is given by (2.25a) at θ = π. Obviously,
the potential distribution obtained is not valid inside a sufficiently small vicinity of the
point z = 0. As before, this fact indicates a failure of the outer expansions (4.1)–(4.4)
in the transition region.

5.4. Meniscus-jet surface charge

Let us now find the meniscus surface charge density σ and the normal component En
of the electric field strength at the meniscus surface. The boundary condition (2.14b)
for E and asymptotic expansion (4.2) for σ with allowance for (4.8a) and (2.25b) yield

En ≡ n · Eg = σ, σ =

(
2

r tan α

)1/2

+ δσ1(r) at Σm, (5.33a, b)

because the normal electric field inside the meniscus vanishes to the leading order (see
(4.7a) and (4.13c)). The right-hand sides of (5.33a, b) are completely determined if the
(scaled) meniscus charge perturbation σ1 is known. Substituting (5.20) into (4.13b),
making use of (5.21), (5.23)–(5.25), and calculating all the coefficients that depend
only on α, we obtain

σ1 = −
(

1.04
f

ε
− 0.74

Γ 2

f

)
1

r2
+ 0.82

f

r5/4
at Σm. (5.34)

Relations (5.33), (5.34) together with (5.30b) yield the dependence En(z) in a parametric
form if r is regarded as a parameter. Figure 4(b) shows the distribution of the normal
electric field En along the meniscus generatrix (the solid line at z < 0). The dashed-
dotted line demonstrates Taylor’s value of En given by (2.25b). The function En(z)
has its maximum Em at z = zE , where

Em =
1

δ1/3

(
3.32

f

ε
− 2.36

Γ 2

f

)−1/3

, zE =
−0.97

E2
m

cos
1.15f2 − 0.92Γ 2ε

f2 − 0.71Γ 2ε
, (5.35a, b)

to the leading order. This fact indicates that the normal electric field reaches its
maximum in the transition region. Finally, the distribution of the surface charge and
normal electric field along the jet follows from (4.3), (4.4), (4.25b), and (5.15):

En = σ =
1

2

(
Γ 2

4C2
T
z

+
f2

2πC
1/2
T z1/4

)1/2

at Σj. (5.36)

In deriving (5.36), we have used (5.14) and taken into account that the strength of
Taylor’s field is parallel to the jet surface in the limit δ → 0. The behaviour of the
function (5.36) is shown by the solid line in figure 4(b) at z > 0. It should be observed
that values of En and σ at the jet surface do not depend on δ and therefore do not
vanish as δ → 0. However, the total charge per unit length of the jet vanishes and so
does the jet vicinity in which the non-vanishing component Eθ is concentrated since
the jet radius is proportional to δ (see (5.31b)).

Evidently, the liquid viscosity affects no characteristics of the jet, meniscus surface
or electric field, to the leading order. Indeed, the capillary number Ca does not appear
in the asymptotic equations (and solutions) for the jet, electric field, and meniscus
surface. In contrast, the liquid density affects the velocity, pressure, radius and charge
of the jet because its velocity equation (5.12) contains the inertial term. As a result,
the electric field in the surrounding gas as well as the surface charge and shape of
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the meniscus depend on the liquid density. However, its effect vanishes as r → 0, i.e.
in the vicinity of the transition region because the first (inertial) term in equation
(5.12) becomes negligible at sufficiently small z. In this case, the asymptotics of the
jet characteristics are given by (5.13a) and (5.15), and the asymptotics of the electric
field, meniscus shape, and surface charge are determined by the first terms on the
right-hand side of (5.20) and (5.34). Using the definitions of the small parameter δ
and non-dimensional variables (see (1.9) and (2.6)–(2.9)), one can readily verify that
the asymptotic behaviour (as r → 0) of the dimensional characteristics of the jet,
electric field, and meniscus surface does not depend on the liquid density, to the
leading order.

It is also worth noting that we have ignored, in accordance with the singular
perturbation theory (Van Dyke 1975), the so-called eigensolutions which could be
added to expressions obtained for φm1, U 1, P1, φg1, Θ1. Obviously, such eigensolutions
should be regular (at θ = π) solutions to the uniform problem which results from
(4.10)–(4.19) by putting f ≡ 0. Some of them are more singular (at r = 0) than φm1,
U 1, P1, φg1, Θ1 and can be eliminated by asymptotic matching with the solution
in the transition region. The others would result in redetermining the basic solution
(4.7)–(4.9).

6. Qualitative analysis of the transition region
As we have already noted, the outer expansions fail in a sufficiently small vicinity

of the virtual apex, because perturbations grow as r → 0. The leading perturbation
equations and solutions obtained from them show that the perturbations stop being
relatively small at r ∼ δ2/3, i.e. in the transition region. As a result, we should rescale
the outer non-dimensional variables to adapt them to studying that region:

r = δ2/3rt, R = δ2/3Rt, U = δ−1/3Ut, p = δ−2/3pt,

φ = δ1/3φt, E = δ−1/3E t, D = δ−1/3Dt, σ = δ−1/3σt.

}
(6.1)

Such rescaling corresponds to passing from the outer spatial scale L to the transition
region scale r∗ in definitions (2.6)–(2.8). Substituting (6.1) into (2.11)–(2.20) and
putting δ → 0, one can obtain the system of governing equations which determine
the (scaled) variables in the transition region and no longer depend on δ. As a result,
the quantities with subscript t in (6.1) do not depend on δ; therefore expression (6.1)
provide true scaling in the transition region for the variables defined by (2.6)–(2.8).

Rigorous asymptotic analysis of that region requires separate studies and will be the
subject of another publication. Below, we shall consider only quantitative estimations
for the behaviour of the variables in the transition region, which would be enough
for many applications. The asymptotic solution in the transition region should be
matched with the meniscus and jet solutions, i.e. the solutions in the meniscus and jet
domains, found in § 5. This fact suggests that we could obtain some useful qualitative
information about the transition region by interpolating the meniscus-jet solution
over that region or extrapolating the meniscus and jet solutions into the transition
region. The dashed line in figure 3 shows the result of the extrapolation of the solution
obtained for the meniscus profile. Obviously, such a procedure is possible only for
Θ 6 π since the extrapolated meniscus radius vanishes at Θ = π in accordance with
(5.30a). This fact comes as no surprise, as the flow rate through the meniscus vanishes,
to the leading order. It appears only in the next approximation that contains the term
δU 2 in the velocity expansion (4.1) (see (4.16b,c)). Using (5.30b), (5.29b), and (5.25a),
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we readily obtain, to the leading order,

zδ =

(
δC1

π− α
)2/3

= δ2/3

(
0.40

f

ε
− 0.43

Γ 2

f

)2/3

, (6.2)

where zδ is the maximum length of the meniscus profile extrapolation into the
transition region (see figure 3) and α = 0.27π.

Examples of the linear interpolation for the liquid velocity, electric potential,
and normal electric field strength are demonstrated by the dashed straight lines in
figures 2(b) and 4(a,b), respectively. These lines are tangent to the solid ones that
show the solutions for the meniscus and jet regions and are uniquely determined by
them. Interpolation accuracy can be improved by using the cubic interpolation for
the electric potential and the quadric one for the electric field strength. We shall not
dwell on this in detail, as the method in question is clear from a theoretical point of
view, though final interpolation expressions are too cumbersome.

The quantity zδ provides an effective scale for the transition liquid domain Vtl .
Since the jet domain Vj continuously turns into Vtl , the condition of the jet thinness
(R � z in Vj) must be violated at z ' zδ , which implies the relationship R(zδ) ' zδ .
Substituting expressions (5.31b) and (6.2) for R and zδ into this relationship, we
obtain, to the leading order,

Γ

2CTf

(
0.40

f

ε
− 0.43

Γ 2

f

)−1/3

'
(

0.40
f

ε
− 0.43

Γ 2

f

)2/3

. (6.3)

Recalling that CT = 0.67 and solving (6.3) with respect to f, we find

f ' fth(ε, Γ ), where fth = (1.87Γ + 1.07Γ 2)1/2ε1/2. (6.4a, b)

Substituting definition (1.6) for f into (6.4a), we obtain the scaling law (1.1)

I ' fth(ε, Γ )

(
γKQ

ε

)1/2

, (6.5)

with the theoretical coefficient given by (6.4b). The function fth(ε) determined by
(6.4b) at Γ = 1, 1.2 is shown by solid lines in figure 5 (curves 1a and 2a). Although
we have used qualitative analysis, the theoretical value fth(ε) conforms fairly well to
the experimental data (Fernández de la Mora & Loscertales 1994; Chen & Pui 1997)
which are shown by the dashed lines in figure 5.

The scaling law (6.5) can be also derived in a different way. To do that, we shall
use the following remarkable feature of the main terms of the asymptotic expansions
for the electric potential distribution along the meniscus and jet surfaces. These terms
can be rewritten in a similar way:

φ = −δAf
εr

+ · · · = −δAf sin α

εR
+ · · · at Σm, (6.6a)

φ = −2CTz
1/2 + · · · = −δΓ

fR
+ · · · at Σj, (6.6b)

where we have used expressions (4.1), (5.1a), and (5.30a) for the meniscus potential
and radius, as well as expressions (5.28) and (5.31b) for the jet potential and radius
(in the limit δ → 0). Extrapolating the main terms of asymptotic expansions (6.6a,b)
into the transition region, we come to the conclusion that they can be matched only
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Figure 5. The non-dimensional current f as a function of the dielectric constant ε for Γ = 1 (curves
1) and Γ = 1.2 (curves 2). Lines marked with a and b correspond to the theoretical values fth(ε)
calculated from (6.4b) and (6.8b), respectively. Experimental data fexp(ε) are shown by the dashed
lines I (Fernández de la Mora & Loscertales 1994) and II (Chen & Pui 1997).

if
Af sin α

ε
=
Γ

f
, where A ≡ 1

2π(1− cos α)
. (6.7)

Solving (6.7) with respect to f and calculating the coefficient which depends only on
α, we have

f = fth (ε, Γ ), where fth = 1.69(Γε)1/2. (6.8a, b)

The function fth(ε) determined by (6.8b) at Γ = 1, 1.2 is shown by solid lines in
figure 5 (curves 1b, 2b) and is also consistent with the experimental data represented
by the dashed lines. It is worth noting that at Γ = 1 expressions (6.4b) and (6.8b)
yield almost the same values, fth = 1.71ε1/2 and fth = 1.69ε1/2, respectively.

It should also be observed that relations (2.6), (2.9), and (5.31b) yield, to the leading
order, the following estimation for the dimensional radius of the jet near its head:

R∗ ∼ LR
∣∣∣
z∼δ2/3

=
Γr∗

2CTf
. (6.9)

This relation is consistent with (1.2) since Γ/(2CTf) ∼ 0.1.
Let us also estimate the electric field in the transition region. Using the extrapolation

and interpolation methods mentioned above, we obtain the normal electric field
distribution along the liquid surface inside the transition region. In particular, the
maximum value of the normal electric field can be estimated by means of (5.35a).
Another practically interesting characteristic is the electric field flux Ω through an
arbitrary surface Σ0(r = δ2/3rt, α < θ < π) which is located inside the gas subdomain
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of the transition region:

Ω(rt) ≡
∫
Σ0

(E ·N 0)dΣ0 = δΩ0 + o (δ) as δ → 0, (6.10)

where N 0 is the normal to Σ0 and Ω0 is the leading term of the asymptotic expansion of
Ω. Finding the electric field strength from (4.3), (4.9), (5.20a), and (5.21), extrapolating
it into the transition region, and calculating the integral (6.10), we obtain

Ω0 = 4.17r
3/2
t + 7.72

f

ε
− 10.22

Γ 2

f
. (6.11)

The quantity rt, which appears in the definition of Σ0 and relation (6.11), should
satisfy the inequalities (

0.40
f

ε
− 0.43

Γ 2

f

)2/3

. rt . 1, (6.12)

since the value of r = δ2/3rt, obviously, must belong to the interval zδ . r . δ2/3,
where zδ is determined by (6.2). Finally, we have the estimation for the mean value
(over the surface Σ0) of the radial electric field 〈Er〉 in the gas subdomain of the
transition region:

〈Er(rt)〉 ≡ 1

Σ0

∫
Σ0

(E ·N 0)dΣ0 =
δ−1/3Ω0(rt)

2π(1 + cos α)r2
t

. (6.13)

Relations (5.35), (6.10)–(6.13) provide the electric field characteristics that could
determine the production of gas phase ions due to their field evaporation inside the
transition region.

7. Conclusions
In this paper, we have developed an asymptotic method of studying the structure of

Taylor meniscus-jets. One limiting region in the space of parameters Ca, We, f, Mo, ε
has been examined. It is described by conditions (4.6) and corresponds to sufficiently
low flow rates of the liquid. The investigation of other regions of the parameter
space is also of great importance. Some of them may describe the cone-jet mode with
the cone semiangle less than α = 49.29◦. For example, such regimes are observed if
We � 1 (Fernández de la Mora 1992). Other regions may not correspond to the
cone-jet mode of electrospay atomization at all.

For the first time, we have obtained and studied the asymptotic solutions of the
basic equations of electrohydrodynamics in all the outer subdomains (the meniscus,
jet and surrounding gas), the gas solution having been matched with the jet and
meniscus ones. This is the most important result of this paper from a theoretical
point of view. The asymptotic method developed here has made it possible to obtain
detailed information on the meniscus-jet structure. We have derived and analysed the
following:

(i) distributions of the velocity, pressure, and electric potential inside the meniscus
and jet;

(ii) the shape and surface charge of the meniscus and jet;
(iii) distribution of the electric field in the surrounding gas;
(iv) estimations of the electrohydrodynamic variables and liquid domain radius in

the transition region.
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It was found that the liquid density does not affect, to the leading order, the
velocity, pressure, and electric potential inside the meniscus. However, it does affect
the jet velocity, the surface charge and shape of the meniscus-jet, and the electric field
in the surrounding gas. Surprisingly, the liquid viscosity affects no meniscus-jet or
electric field characteristics, to the same order, except the velocity distribution inside
the meniscus. This distribution is determined by the capillary number Ca and stream
function ψ(r, θ) which are given by (1.5a) and (5.7a), Ca being proportional to the
viscosity coefficient. The viscosity should be also important in the transition region Vt
since the fluid dynamic equations in Vt are elliptic owing to the presence of viscosity.
This feature is essential for the successful matching of outer and transition region
expansions.

From a practical point of view, the most interesting characteristics of the cone-jet
mode of electrospray atomization are those which can determine the production
of charged drops and gas-phase ions. In this paper, we have found some of them
using the asymptotic solutions obtained for all outer subdomains. We have derived
relations (5.14), (5.15c), and (5.31b), which provide the velocity, charge, and radius
of the jet. Subsequently we have calculated the electric field component normal to
the meniscus-jet surface (see (5.33), (5.34), and (5.36)). Finally, we have estimated
the electric field inside the transition region (see (5.35a) and (6.10)–(6.13)). The other
essential result is a derivation of dependences (6.4) and (6.8) for the non-dimensional
current f(ε). They are consistent with the scaling law (1.1) determined experimentally
by Fernández de la Mora & Loscertales (1994) and data obtained by Chen & Pui
(1997). In deriving (6.4) and (6.8), we have extrapolated the obtained asymptotic
solutions into the transition region and then matched them in the limit δ → 0. To
rigorously prove the scaling law (1.1), one should find an asymptotic solution to the
basic equations of electrohydrodynamics in the transition region and match it with
the solutions that have been obtained for the meniscus, jet and gas in § 5.

Comparing the theory with experiments, we should note the following important
observations. Fernández de la Mora & Loscertales (1994) reported that they could
not create the stable cone-jet mode at η . 0.5 which corresponds to δ . 10−2. That
the asymptotic limit δ → 0 does not appear to be realized in experiments is not
surprising, although the perturbation theory works at any small values of δ. This is a
property of many asymptotic solutions in fluid mechanics. If a perturbation quantity
is sufficiently close to its limit, new effects may arise and change the phenomenon in
question to such an extent that it cannot be described by the original equations. A
classical example is the impossibility of realizing a laminar boundary layer solution
as the Reynolds number tends to infinity, due to the development of turbulence.
However, asymptotic solutions are usually very useful in some region of small values
of a perturbation quantity. Sometimes, they may continue to conform reasonably well
to experimental data at values that are significant (Van Dyke 1975).

It is also worth noting that experiments are always carried out in a chamber
of a finite size, and physical conditions at its walls are modelled by mathematical
conditions at infinity. Such modelling can only be approximate as the meniscus and
jet are assumed to stretch to infinity. For instance, in practical experiments, there
might be an effect of the double layer charge at the inner surface of a capillary needle
on a charge distribution in the meniscus. In sufficiently low-conductive liquids this
double layer is not at equilibrium, and its charge can be swept downstream (Chernyi
1983). Obviously, this complication does not arise in the theoretical consideration
of semi-infinite menisci. On the contrary, an ion distribution across the jet is not
important since the terms caused by the ion mobility ki and electrical conductivity K
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(the terms with φ′0 in (3.10a)) vanish from the jet equations in the first approximation
in δ (see (4.24b)).

I am grateful to Professor J. Fernández de la Mora (Yale University) who attracted
my attention to the problems of electrospray atomization. His valuable comments
have been greatly stimulating. I wish to thank the US National Science Foundation
(Grant CTS-9319051) and a Goodyear grant from the State of Connecticut and
Analytica of Branford for partial support of this effort.

Appendix. Stream function and pressure of the liquid flow inside the
meniscus

Let us seek the solution to the problem (5.3)–(5.6) in the form

ψ = r1/2Ψ (θ), P1 = r−5/2P (θ). (A 1a, b)

Substituting (A 1) into (5.3)–(5.6), we obtain equations to determine Ψ and P :

D̂−3/2D̂1/2Ψ = 0

(
D̂ν ≡ ν(ν − 1) + sin θ

d

dθ

1

sin θ

d

dθ

)
, (A 2)

P =
2

5 sin θ

dD̂1/2Ψ

dθ
,

dP

dθ
= −3D̂1/2Ψ

2 sin θ
, (A 3a, b)

and the boundary conditions to them:

Ψ = 0,
d

dθ

1

sin θ

dΨ

dθ
= Bf at θ = α, (A 4a, b)

Ψ = 0,
dΨ

dθ
= 0 at θ = 0. (A 5a, b)

It should be observed that equation (A 3b), which has resulted from (5.4b), is not inde-
pendent of relations (A 3a), (A 2) and therefore can be dropped. Indeed, substitution
of (A 3a) into (A 3b) yields (A 2).

Since the operators D̂1/2 and D̂−3/2 are commutative, a general solution to the
problem (A 2), (A 5) is given by

Ψ = g1G1/2(cos θ) + g2G−3/2(cos θ), (A 6)

where g1 and g2 are arbitrary constants, G1/2(cos θ) and G−3/2(cos θ) are regular (at
θ = 0) solutions to the Gegenbauer equations:

D̂1/2G1/2 = 0, D̂−3/2G−3/2 = 0. (A 7a, b)

They can be represented as (Kamke 1942)

G1/2 = − sin θP ′−1/2(cos θ), G−3/2 = − sin θP ′3/2(cos θ), (A 8a, b)

where P−1/2 and P3/2 are the standard Legendre functions of degree −1/2 and 3/2,
respectively, and primes denote the derivatives with respect to θ. Substituting (A 8)
into (A 6) and, in turn, (A 6) into (A 4) and taking into account the fact that the
functions G1/2 and G−3/2 satisfy (A 7), we obtain the system of two linear algebraic
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equations for g1 and g2:

g1P
′
−1/2(cos α) + g2P

′
3/2(cos α) = 0, (A 9a)

g1P
′
−1/2(cos α)− 15g2P

′
3/2(cos α) = −4Bf, (A 9b)

which yield

g1 = − Bf

4P ′−1/2(cos α)
, g2 =

Bf

4P ′3/2(cos α)
. (A 10a, b)

Substituting (A 8) and (A 10) into (A 6), we obtain the function Ψ (θ) which appears
in expression (A1 a) for the stream function ψ(r, θ):

Ψ =
Bf sin θ

4

(
P ′−1/2(cos θ)

P ′−1/2(cos α)
− P ′3/2(cos θ)

P ′3/2(cos α)

)
. (A 11)

Finally, substitution of (A 11) into (A 3a) yields the function P (θ) which appears in
expression (A 1b) for the leading term of the (scaled) liquid pressure P1 inside the
meniscus:

P = −3BfP3/2(cos θ)

2P ′3/2(cos α)
. (A 12)

Using (5.2), (A 1), (A 11), and (A 12), we also find the leading terms of the (scaled)
velocity components inside the meniscus:

U1r = −fW (θ)

r3/2
, U1θ =

Ψ (θ)

2r3/2 sin θ
, (A 13a, b)

and the leading term of the (scaled) normal liquid stress at the meniscus surface:

−
(
P1 − 2n · dU 1

dn

)
θ=α

=
−1

r5/2

(
P (α) +

Ψ ′(α)
sin α

)
=
−Cf
r5/2

, (A 14)

where

W (θ) ≡ B

16

(
P−1/2(cos θ)

P ′−1/2(cos α)
+ 15

P3/2(cos θ)

P ′3/2(cos α)

)
, (A 15)

C =
B

16

(
P−1/2(cos α)

P ′−1/2(cos α)
− 9

P3/2(cos α)

P ′3/2(cos α)

)
= 0.45, (A 16)

and the constant B is defined by (5.5). In particular, (A 15) yields

W (α) = 0.146, W (0) = −0.154. (A 17)

Substituting (A 13a) and (5.8a) into the asymptotic expansion (4.1) for the liquid
velocity u and making use of (A 17), we obtain expressions (5.9) for u. Finally,
relation (A 14) allows us to readily calculate the left-hand side of the boundary
condition (4.15) which determines the meniscus surface perturbation.
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